?

Log in

No account? Create an account

Entries by category: производство

Родоначальник производства электронно-вычислительной техники в России — Московский завод счетно-аналитических машин им. В. Д. Калмыкова раньше выглядел так. Но нынче исчезают с лица города последние свидетельства его существования, вместо бортовых ЭВМ "АРГОН" он производит электрошкафы и автоматы по продаже газировки, но это пока скорее всего временное явление, которое весьма вероятно в ближайшие месяцы будет окончательно поборенно, и преодолено решительными и эффективными собственниками. Любопытно "пиковая дама" особняк которой попал под раздачу к ним по ночам является?



Про САМ...Collapse )

Телевизор Б-2

b2_


10 мая 1932 года сделали двадцать первых "любительских телевизоров - Б-2" в тогда ещё Ленинграде на заводе им. Козицкого. С 1933 по 36 год было выпущено около 3 000 готовых телевизоров и непонятное количество комплектов, которые предназначались для самостоятельной сборки их радиолюбителями. Телевизор Б-2. Описание и инструкция. Ленинград, 1936. 44 стр. Тир. 4200 экз. Любопытное чтение на Майские праздники.


Внутри Б-2Collapse )
Вчера увидел в коментариях у Сергея Фролова sfrolov видео Бориса Калашника


ЕМНИП для ламп 6Пххх стандартное напряжение накала было 6,3 В и анодное 250 В.
Промышленные генераторы были из тех, что я видел 400 Гц, но в видео упоминается на 500 Гц для машины М20



Просмотр подталкивает на анонс поста/ов о БП большой мощности для больших машин и прочих устройств и систем.

Завод "Процессор"

Вот такая грустная история с Воронежским "Процесор" и вот как он выглядит сейчас. Может нужно экспедицию организовать спасать остаток библиотеки?

Оригинал взят у vmulder в Завод "Процессор"
Когда-то на этом заводе делались советские ЭВМ. А теперь....

Фото 1.

узнать судьбу завода | ещё 47 фото Collapse )

1023681-pechatnaya-plata-1


Продолжение нашей удивительной истории развития технологии производства ПП в СССР по воспоминаниям ныне покойного В.А. Ильина для тех кто осилил первую часть… При нажатии патенты открываются в высоком разрешении.

РАЗРАБОТКА ЭФФЕКТИВНЫХ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ ИЗГОТОВЛЕНИЯ ПЕЧАТНЫХ ПЛАТ, В ТОМ ЧИСЛЕ И МНОГОСЛОЙНЫХ (1965-1975 гг.)

[Читайте кому интересно]

Если предыдущие периоды развития производства печатных плат можно было оценить как начальные («зачаточные»), то период 1965-1975 гг следует назвать периодом бурного расцвета, так как в этот период были проведены необходимые разработки и начато серийное производство необходимого оборудования и выпуск многих материалов. Тираспольский завод «Молдавизолит» приступил к выпуску фольгированного стеклотекстолита в количествах удовлетворяющих потребность страны. Казанский завод «Коммунар» освоил серийное производство сухих пленочных фоторезистов, как водопроявляемых, так и органопроявляемых. Головной технологический институт Минрадиопрома - ЦНИТИ (директор Е.П.Котов) организовал разработку ряда руководящих технических материалов (РТМ) по технологии производства печатных плат различного типа, в том числе и для многослойных печатных плат (МПП) различного типа - РТМ ЮГО.05.007. Ред.1-1969г. В разработанных РТМ был зафиксирован технический уровень производства печатных плат по состоянию на 1968-69 годы. Большую работу по обеспечению производства печатных плат выполнило СКБ радиоматериалов под руководством Н.Д.Белкина. Было организовано производство пленочных фоторезистов в г.Казани на заводе «Коммунар». Организовано также производство гаммы диэлектрических материалов, необходимых для изготовления печатных плат различного типа, включая и многослойные. Эта работа постоянно велась и все последующие годы. Тираспольский завод «Молдавизолит» приступил к выпуску в больших масштабах фольгированного стеклотекстолита, включая и тонкие фольгированные диэлектрики для производства многослойных печатных плат. В этот же период начали налаживаться деловые контакты с Западно-Европейскими фирмами Шмоль, Ганс Хольмюллер, Шеринг, Блазберг и др. У этих фирм приобретали главным образом оборудование для сверления отверстий в платах, для обработки пленочных фоторезистов, автоматических линий без гальванических процессов. Основными разработчиками технологии и оборудования были предприятия Министерства Радиопромышленности. Так большой коллектив Ленинградского ПО «Авангард» (директор О.А.Пятлин, главный конструктор Иткинсон В.Г.) разработал комплекс оборудования для струйной обработки плат по типу образцов фирмы «Chemcut» и помог в организации его серийного производства в г.Хмельницком (завод «Темп»). Разработан также комплект оборудования для нанесения, проявления и снятия пленочных фоторезистов по образцу фирмы «Dupont». Производство этого комплекта оборудования было организовано в г.Гомель (завод ГЗРТО). Ярославский завод «МАШПРИБОР» приступил к выпуску сверлильных станков с ЧПУ (СФ-2, СФ-4). Аналогичные виды оборудования, а также установки для экспонирования, трафаретной печати и т.д. разрабатывались в ПКБ приборостроения (г.Рязань), институтом электротехнической промышленности в г.Истра. Некоторые виды оборудования начали производить предприятия в городах Могилеве, Воткинске. В связи с намеченным выпуском в больших размерах средств вычислительной техники Минрадиопром (зам.министра Реут А.А.) принял решение о покупке целого завода по производству многослойных печатных плат (МПП) у Французской фирмы CII, которая спроектировала и организовала строительство завода в г.Минске, оснастив его полным комплектом необходимого оборудования для выпуска полмиллиона МПП в год. Ознакомление с опытом изготовления печатных плат в зарубежной технике, промышленный выпуск сухих пленочных фоторезистов и применение сверлильных станков с программным управлением определили необходимость создания в последующий период так называемого «базового технологического процесса» на основе электрохимической технологии. Этим было завершено многолетнее противостояние двух способов производства. «Победа» оказалась на стороне электрохимиков, а «побежденная» сторона завоевала прочное место в технологии производства бытовой радиоаппаратуры (телевизоры, радиоприемники). Применение сухих пленочных фоторезистов и сверлильных станков с программным управлением позволило в значительной степени упростить позитивный технологический процесс, исключив временное нанесение лаковой пленки перед химическим меднением и такую операцию, как сверление отверстий по отпечатку или через кондукторы. В качестве металлорезиста сохранилось серебрение в нецианистых (роданисто-синеродистых) элементах по той причине, что еще не было надежной технологии электролитического получения олово-свинцового сплава ПОС-60 да и широко применяемый раствор на основе хлорного железа растворял покрытие типа ПОС-60. Использование же персульфатных растворов в больших масштабах экологически не оправдывалось. К началу 70-х годов в основном завершились разработки новых травильных растворов на основе хлорной меди: солянокислых растворов для производства печатных плат бытовой радиоаппаратуры (негативные процессы) и аммиачно-хлоридных для плат с наносимым слоем металлорезиста типа ПОС-60 (оловянно-свинцовый сплав, содержащий 60% олова). В этот же период развитие проектирования и производства средств вычислительной техники вызвало необходимость применения многослойных печатных плат (МПП) и соответственно развитие технологии изготовления многослойных плат стало особо важной задачей. В сложившийся работоспособный коллектив разработчиков-технологов влились свежие силы способных и талантливых инженеров:
Галецкий Ф.П., Цыгин Н.В., Старикова Т.А. (ИТМ и ВТ), Скворцова Т.П., Жак Л.И., Прохоров В.Д. (ЦНИТИ), Фантгоф Ж.Н., Грекова Н.А., Иванова Л.В., Тимофеева И.В. (НПО «Авангард», г.Ленинград), Медведев А.М., Тюрина Н.С., Фомичев В.И. (НИЦЭВТ). Большую организаци­онную работу проводили сотрудники Минрадиопрома Гундобина Г.П., Калита Е.Д.

ТЕХНОЛОГИЯ ИЗГОТОВЛЕНИЯ МНОГОСЛОЙНЫХ ПЕЧАТНЫХ ПЛАТ (МПП)

Динамика развития технологических процессов изготовления МПП весьма интересна и поучительна; она прежде всего свидетельствует о необычайной изобретательности разработчиков, что способствовало быстрому развитию производства средств вычислительной техники для различных видов аппаратуры в условиях, когда отечественная промышленность еще не смогла обеспечить диэлектрические материалы требуемого качества для изготовления МПП классическим методом металлизации сквозных отверстий. Первые шаги в производстве МПП были сделаны в виде попытки получить многослойную композицию способом металлизации сквозных отверстий, как это принято делать на всех западных и Дальневосточных странах. Однако, как писал еще декабрист Одоевский на приветствие А.С.Пушкина «К мечам рванулись наши руки, но лишь оковы обрели». Дело в том, что по какой-то случайности в производстве диэлектриков в виде тонкого фольгированного стеклотекстолита и прокладочной стеклоткани были применены смолы реактивного типа (фенолформальдегидные), которые после полимеризации в процессе прессования пакета МПП, приобретали высокую химическую стойкость и, будучи размазанными при сверлении отверстий (смоляное наволакивание), не удалялись химическим воздействием. В результате этого при последующей химико-гальванической металлизации не получалось хороших контактов в межслойных соединениях (образовывались, как тогда говорили, «плавающие контакты»). Понадобилось некоторое время, пока по инициативе Ленинградского НПО «Авангард» при активном действии ведущего инженера Ива­новой Л.В. совместно с НИИ «Плаcтполимер» в очень короткие сроки (менее 1 года) были разработаны смолы эпоксидного характера и переданы заводу «Молдавизолит». Вскоре к материалам типа ФДМ была приставлена буква «Т», что означало «травящийся» - ФДМТ. В изданном в 1969 году Руководящем Техническом Материале Министерства (МРП) Юг0.054.007 «Платы печатные многослойные» в характеристике метода металлизации сквозных отверстий констатировалось: «Метод является простым и менее трудоемким, чем остальные, но для получения надежных межслойных соединений требует применение специальных диэлектриков (травящегося или активированного)». И, как на перспективу, в РТМ указывалось, что «метод позволяет изготавливать платы с количеством слоев до 6 и более». Кстати, когда в международном комитете МЭК по печатным платам (ТК-52) при обсуждении технических требований к «Материалам для производства МПП» рассматривалось наше предложение о прибавлении буквы «Т» (травящийся) к обозначению материала, оно было единогласно отклонено, как излишнее. Было также добавлено: «М-р Ильин, свойство быть травящимся - это естественное и необходимое свойство материала, что-то вроде того, как «вода должна быть жидкой». Между прочим, только один американский делегат, м-р Ларсен, все время допытывался у меня «в каких же случаях мы используем тонкие фольгированные диэлектрики на фенолформальдегидной основе?».

Приходилось уклоняться от правильного ответа, что, по-видимому, послужило предположением о каких-то «секретных» функциях материала. Тогда как это был типичный «ляп» в наших «разработках». В течение периода предшествовавшего появлению необходимых («травящихся») диэлектриков предприятиями использовались весьма оригинальные и чрезвычайно трудоемкие методы, краткая характеристика которых приведена ниже:

Метод попарного прессования.

Данный метод заключался в том, что на двух заготовках двустороннего фольгированного диэлектрика сначала выполнялся проводящий рисунок схемы внутренних слоев МПП негативным комбинированным способом. На каждой заготовке между рисунком схемы внутреннего слоя и сплошным слоем фольги наружного слоя выполнялись межслойные соединения в виде металлизированных отверстий, после чего полученные заготовки склеивались при помощи стеклоткани, пропитанной лаком. Рисунок схемы на наружных сторонах платы и межслойные соединения между ними выполнялись позитивным методом. Таким образом получалась 4-х слойная плата, в которой металлизированными отверстиями соединялись 1-й с 4-м слоем, и 2-й с 3-м. Этот метод был наиболее распространенным у разработчиков РЭА и считался надежным. Основной его недостаток заключался в невозможности получить многослойную плату с числом слоев более 4-х и в весьма значительной трудоемкости.

Метод послойного наращивания.

Метод предложен и разработан НИЦЭВТ'ом (автор Тюрина Н.С.). Технологический процесс очень сложный и описание его займет слишком много места, да и в этом нет необходимости. Достаточно лишь охарактеризовать основную идею данного способа, которая заключалась в том, что вместо химико-гальванической металлизации сквозных отверстий выращивались гальванически медные столбики, заполнявшие отверстия в диэлектрике. Эти столбики могли соединять проводники между любыми слоями и в любых сочетаниях. Метод позволял изготавливать платы с количеством слоев до пяти. Несмотря на сложность этого способа и очень длительный технологический цикл изготовления МПП, некоторые промышленные предприятия, например з-д «САМ им.Калмыкова» в г.Москве, изготавливал по этому способу МПП для своей продукции еще длительное время.

В настоящее время, когда МПП изготавливается с весьма большим количеством слоев и методы характеризуются высокой технологичностью, способ послойного наращивания служит свидетельством большого творческого энтузиазма и изобретательности технологов того времени.

Метод выступающих выводов.

Метод был разработан коллективом технологов НИИ-17 (г. Москва), в данном методе гальванические процессы не применялись. В начальный период изготовления МПП производился необходимый фольгированный материал посредством приклейки медной фольги к тонкому диэлектрику на основе стеклоткани, в котором прорубались несколько рядов квадратных окон размером 40х40 мм или что-то близкое к этому. Затем методом травления получали проводящий рисунок, причем в пределах каждого окна проводники заканчивались в виде узких медных полосок, провисающих над окном. После этого производилась склейка всех слоев в пакет причем в межслойном диэлектрике заранее прорубались аналогичные окна. В результате получалась многослойная композиция с узенькими проводниковыми ленточками в отдельных слоях. Эти ленточки соответственно и получили название выступающих выводов. Далее выводы, выступающие из всех слоев платы, отгибались на колодки, расположенные на наружной стороне платы. Межслойные соединения в этом методе отсутствуют и выводы элементов подсоединяются и припаиваются непосредственно к выводам пла­ты, расположенным на колодках. Таким образом на МПП данного типа устанавливались только навесные элементы с планарными выводами. Количество слоев получали до 15-ти.

Разнообразие различных способов изготовления многослойных плат, как очевидно из этой ситуации, сложившейся из-за отсутствия материалов с необходимыми свойствами, вызвало к жизни приведенные выше необычные способы изготовления МПП. Невольно вспоминается старая русская поговорка «Голь на выдумку хитра».



СОВЕРШЕНСТВОВАНИЕ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ ДЛЯ СЕРИЙНОГО ПРОИЗВОДСТВА ДВУХСТОРОННИХ И МНОГОСЛОЙНЫХ ПЕЧАТНЫХ ПЛАТ (1973-1978 гг.)

[Читайте кому интересно]

Этот период характеризуется особенно быстрым развитием технологических процессов и приобщения их к уровню производства зарубежных фирм, что было обусловлено освоением производства диэлектриков в широком ассортименте на «Молдавизолите», выпуском сухих пленочных фоторезистов, производству современного оборудования и в значительной степени повышению знаний и опыта как технологов НИИ, КБ, так и серийных предприятий. Прежде всего исчезли различия в подходе к технологии изготовления двухсторонних печатных плат (ДПП) - прекратились дискуссии о методах изготовления и был создан единый, всеми признанный так называемый (в то время) «базовый» технологический процесс, применяющийся и по сей день во всех отраслях промышленности.

К наиболее крупным достижениям этого периода времени можно отнести следующие события:


  • Создание единой структуры технологии изготовления ДПП и МПП;

  • Отработка стабильных процессов химического меднения;

  • Отработка наиболее эффективных процессов гальванического меднения и покрытия сплавом олово-свинец в качестве металлорезиста;

  • Производство плат с повышенной плотностью монтажа на материале «Слофадит» (5-ти микронная медная фольга);

  • Разработка полуаддитивной технологии;

  • Освоение производства МПП на основе общепринятого метода металлизации сквозных отверстий.

  • Стабилизация раствора химического меднения.

Длительное время предприятия имели весьма малые сроки использования растворов химического меднения из-за их недостаточной стабильности, а также из-за малого опыта инженерного состава в области химического восстановления меди из растворов на основе тартратов или трилонатов. Однако, вскоре эти трудности были преодолены, были отработаны рецептуры растворов меднения с хорошими стабилизаторами, например диэтилдитиокарбоматом и комплексными добавками, разработанными Литовским институтом химических технологий. Предприятия радиопромышленности получали значительную помощь от больших специалистов в области химического меднения Т.А.Стариковой (Москва) и Н.А.Грековой (Ленинград).

Много внимания также уделялось подготовительным операциям посредством разработки совмещенных растворов активации, содержащих малые концентрации дорогостоящего хлористого палладия (до 0,1 г/л) в совмещенных растворах сенсибилизации и активации диэлектрика.

Повышение эффективности гальванических процессов.

Применявшиеся предприятиями электролиты гальванического меднения в виде сульфатных или фторборатных электролитов имели ряд недостатков, главные из них:


  • низкая рассеивающая способность, что не обеспечивало равномерной металлизации отверстий в печатных платах при отношении толщины платы к диаметру отверстий более чем 2:1;

  • недостаточная эластичность слоя меди, что приводило к разрыву слоя металлизации в отверстиях при термоударах (например при пайке на волне припоя).

Особенно плохим качеством обладали осадки меди из борфтористоводородных электролитов, которыми многие увлекались в погоней за интенсификацией процесса меднения. Состав сульфатных электролитов кстати практически не отличался от составов, применявшихся более 100 лет тому назад Борисом Семеновичем Якоби, при разработке процессов гальванопластики. (Сульфат меди 250 г/л, кислота серная - 50 г/л). Сотрудники НПО «Авангард» (Ленинград совместно с кафедрой электрохимических производств Ленинградского технологического института (проф. Вячеславов П.М. и доцент Буркат Г.К.) разработали новый вариант сульфатного электролита с блескообразующей добавкой, получившей название "ЛТИ". Собственно добавку синтезировал сотрудник кафедры органической химии М.Л.Петров. На основании изучения состава ряда импортных добавок («Новатор», «Купразит» и др.). Добавка представляла собой продукт, получивший название «динатриевая соль дитиобисбензолсульфокислоты», ее формула NaSO S-S SONa. Довольно быстро удалось организовать производство этого ве­щества во Львовском институте материалов Минрадиопрома. Несколько позже, кстати и более высокого качества, начал выпускать эту добавку под названием БЭСМ опытный завод Ленинградского ГИПХа (Гос.институт прикладной химии). Электролит меднения был рекомендован следующего состава: сульфат меди 60-80 г/л, кислота серная 150-160 г/л и добавка «ЛТИ» 2 мл/л. Осадки меди получались гладкие, блестящие и что очень важно эластичные. По разработанному в то же время методу проверки эластичности по величине относительного удлинения при разрыве меди новый электролит меднения обеспечивал относительно удлинение 9-11%, тогда как в борфтороборатном электролите эта величина была равна 4-5,5%. Это свойство электролита особенно важно при изготовлении МПП, в которых слой металлизации в отверстиях должен быть особо эластичным. Проверки эластичности меди в производственных условиях показали, что она значительно снижается по мере эксплуатации электролита. Было установлено, что это является результатом накопления органических примесей вследствие «выщелачивания» органических веществ из пленочных фоторезистов. Снижение эластичности меди является сигналом к немедленной обработке электролита углем. Кроме добавки «ЛТИ» некоторыми предприятиями применялись такие добавки, как «Лимеды» (по разработке Латвийского института), «Меданит», «Новостар» и некоторые другие.

Металлорезист в виде гальванического сплава олово-свинец (ПОС-60) также подвергался существенной доработке, так как использование состава борфторатного электролита, рекомендованного в литературе по гальванике, не дало хороших результатов, главным образом из-за не стабильности состава и, как следствие этого, плохую растекаемость припоя при пайке выводов ЭРЭ на волне припоя. Последующие исследования показали, что различие в величине катодной плотности тока в отверстиях и на контактной площадке влияло на состав сплава на этих участках и добавки клея в электролит не обеспечивали стабильности содержания олова на различных участках проводящего рисунка. На основе материалов лицензии, купленной у фирмы «Шеринг-АГ» за 300 тыс.марок (Западный Берлин) были выполнены необходимые экспериментальные работы, которые завершились введением в состав электролита вместо клея двух добавок - синтанол ДС-10 и синтанол ДС-10 натрий, последняя была синтезирована во Львовском НИИ материалов Минрадиопрома. В этой работе организованной по инициативе НПО «Авнгард» активно участвовали его сотрудники - В.А.Терешкин и Б.М.Мильман. Добавки синтанола ДС-10 (ТУ 2-6-14-527-77) и синтанола ДС- нат­рий (ТУ АУЭО.028.007) обеспечивали необходимую структуру и стабильность сплава в широком интервале плотности тока. Позднее Литовский институт химии и химической технологии разработал процесс получения блестящего покрытия сплавом ПОС-60, процесс получил развитие на многих предприятиях. В период предшествовавший внедрению новых процессов получения стабильного по составу сплава олово-свинец, значительное распространение получило покрытие сплава олово-кобальт в качестве металлорезиста, в котором кобальта практически не было (0,005-0,05%), но это не «омрачало» ни разработчиков («Вымпел» г.Москва), ни потребителей, так как «выручало» применение дополнительного облуживания сплавом Розе, со всеми отрицательными последствиями такого решения.

ПРОИЗВОДСТВО ПЛАТ С ПОВЫШЕННОЙ ПЛОТНОСТЬЮ МОНТАЖА

Дальнейшее развитие процесса микроминиатюризации элементной базы естественно повлекло за собой необходимость увеличения плотности монтажа на двухсторонних печатных платах. Исследование фольгированного материала с толщиной медной фольги до 50 мкм ограничивало возможности уменьшения зазора между проводниками вследствие неизбежного бокового подтравливания. Первым шагом в направлении создания диэлектрика с тонкомерной медной фольгой был материал «слофадит». Название, весьма неудачное, дал изготовитель - завод слоистых пластиков. Название расшифровывалось следующим образом: «СЛО» - завод, «ф» - фольгированный, «аддит» - аддитив­ная технология (?). Толщина медной фольги - 5 мкм. При серийном производстве аналогичного материала заводом «Молдавизолит» материал был назван «СТПА» (стеклотекстолит для полуаддитива), тоже не совсем правильно. Технические условия на материал были выпущены лишь в 1980 году (ТУ 16-503-200-80). При использовании этого материала изготовители получили возможность довести плотность монтажа до зазора между проводниками 0,15-0,1 мм.

РАЗРАБОТКА ПОЛУАДДИТИВНОЙ ТЕХНОЛОГИИ

По принятой на Западе технологии аддитивными способами изготовления печатных плат называют такие способы, в которых не применяют травления, а проводящий рисунок получают только химическим или другим способом осаждения металла (additio - сложение). В 1963 г. американская фирма Photocircuits начала производить печатные платы на катализированном нефольгированном диэлектрике, применяя толстостенное химическое меднение для получения проводящего рисунка (процесс СС-4). Несмотря на то, что технология отличалась значительной простотой, этот способ не получил большого распространения. Полуаддитивный способ предусматривает металлизацию таким слоем меди поверхности нефольгированного диэлектрика (включая просверленные предварительно монтажные и переходные отверстия) и после получения проводящего рисунка вытравливание меди с промежутков между проводниками. Классическим примером полуаддитивной технологии может служить электрохимический процесс изготовления печатных плат, разработанных в 1958 г. в НИТИ-18 и применявшийся в серийном производстве на Новгородском заводе. Повторное «рождение» полуаддитивного способа явилось результатом активной деятельности руководителя ОКБ завода «Марийский машиностроитель» в г.Йошкар-Ола В.И.Охотникова. По его инициативе и его активном участии на Тираспольском заводе «Молдавизолит» был разработан и организован выпуск нефольгированного стеклотекстолита СТЭК-1,5 (ТУ16-503.201-80). На обе стороны этого материала нанесен адгезионный слой из эпоксидно-каучуковой композиции толщиной 50 мкм, который перед химическим меднением подтравливается в растворе хромовой и серной кислот для повышения адгезии наносимого слоя меди химическим восстановлением меди. Полуаддитивный способ обеспечивал более высокую плотность монтажа (ширина проводников и зазор между ними до 0,15мм) однако он не нашел широкого применения главным образом из-за сложности подготовительных операций («набухание» и травление адгезионного слоя). Предприятия предпочитали приобретать более дорогой материал с тонкомерной фольгой (СТПА) и вести изготовление плат по типовому технологическому процессу. Аддитивный же метод, предусматривающий толстослойное химическое меднение и использование катализированного диэлектрика, несмотря на большие усилия Н.А. Грековой и ее сотрудников, не получил применения даже в мелкосерийном производстве. По мнению автора применение катализированного диэлектрика это возможное ухудшение электроизоляционных свойств особенно после длительного употребления в результате «старения» материала. Катализаторы в диэлектрике - это электропроводные частицы в слое затвердевшей смолы, они не могут не проявить себя со временем. Не случайно, что американский процесс СС-4 не используется для производства плат внешней аппаратуры.



ЗАВЕРШАЮЩИЙ ЭТАП ИСТОРИИ ПРОИЗВОДСТВА ПЕЧАТНЫХ ПЛАТ (1978-1990 гг.)

[Читайте кому интересно]

В начальные годы этого периода 1978-80 гг. производство всех видов печатных плат вышло на уровень более или менее соответствующий уровню мировой техники. Весь накопленный положительный опыт в технологии производства печатных плат был отражен в руководящем технологическом материале в виде отраслевого стандарта ОСТ 107.460092.004.01-86. Авторский коллектив возглавляемый В.А. Терешкиным в составе ведущих специалистов НПО «Авангард» Фантгоф Ж.Н., Грековой Н.А., Миронюк Г.В., Кондратьев А.И., сумела весьма четко аккумулировать опыт производства печатных плат, накопленный отдельными разработчиками и промышленными предприятиями бывшего Советского Союза.

Кроме четкого описания изготовления плат бытовой радиоаппаратуры, двухсторонних печатных плат в различных вариантах: субтрактивной и полуаддитивной технологии, методов контроля и приготовления многочисленных растворов значительное внимание уделено производству многослойных плат способов металлизации, сквозных отверстий. Однако, наиболее критичная операция - очистка отверстий от смольного наволакивания предусматривалась одним методом - травления в горячей серной кислоте с добавлением плавиковой. Не получили еще применявшиеся на заводе процессы типа «Смобк» (SMOBC), горячее облуживание по типу Левельэр (Levelair) и некоторые другие операции, по которым отечественная промышленность еще не накопила опыта

Дальнейшее развитие технологии производства многослойных печатных плат последовало позднее (1980-1990 гг.)

РАЗВИТИЕ ПРОИЗВОДСТВА МНОГОСЛОЙНЫХ ПЕЧАТНЫХ ПЛАТ

Освоение производства «Травящегося» диэлектрика в виде тонких фольгированных и прокладочных материалов позволило «сдать в архив» весь комплект громоздких технологических процессов изго­товления МПП, применявшихся до этого времени и приступить к освоению широко распространенному во всем мире процессу изготовления методом металлизации сквозных отверстий. Опыт изготовления плат постепенно совершенствовался, возрастало число слоев от 4-5-ти до 10-12-ти; улучшалось качество прессования: повсеместно стали заменять Оренбургские пресса на импортные (Burklе, Passadena), в которых нет большого разброса по величине температуры плит и давления. Для сверления отверстий, как правило использовались станки с программным управлением «Шмоль», «Эдванс-контроль» и др. Научились получать межслойное соединение достаточно эластичным слоем гальванически осажденной меди. Однако, одна из наиболее ответственных операций - удаление смольного наволакивания в отверстиях МПП производилось наименее совершенным способом - травлением в серной кислоте. Главный недостаток заключался в том, что при промывке плат после травления в серной кислоте в отверстиях образовывался железообразный слой продуктов гидролиза, а также наличие остатков клея, на которых серная кислота не оказывает воздействия. По этой причине в технологии предусматривалась двухкратная гидроабразивная обработка пульпой, содержащей электрокорунд М40 в отношении с водой 1:4, под давлением 0,4-0,5 МПа. Подобный способ обработки отверстий в МПП сохранился в нормативно-технической документации до настоящего времени. Так в представленном выше отраслевом стандарте Минрадиопрома ОСТ 107.460092.004.01-86. Других способов обработки отверстий, как например перманганатный химический, отраслевой стандарт не предусматривает. Более совершенные методы изготовления многослойных печатных плат с большим числом слоев и очень высокой плотностью монтажа созданы в Институте точной механики и вычислительной техники, коллективом, возглавляемым д.т.н. Францем Петровичем Галецким. Но это уже не история - а достижение современности!



1051744-gibkaya-pechatnaya-plata-1
Более подробно можно посмотреть на http://parallel.ru/info/education/tom-kurs.html#p2

2. ВЫЧИСЛИТЕЛЬНАЯ СИСТЕМА "ЭЛЕКТРОНИКА СС БИС"

Вычислительная система "Электроника СС БИС" включает:

высокопроизводительную основную машину векторно-конвейерного типа, оснащенную полупроводниковой массовой памятью большой емкости и внешней памятью на магнитных дисках;
управляющую машину;
внешние машины.
Управляющая машина, внешние машины и устройства внешней памяти (массовой и на магнитных дисках) подключаются к основной машине через устройство обмена, содержащее 16 высокоскоростных каналов. Пользовательские терминалы подключаются к внешним машинам.

2.1. Аппаратные особенности основной машины.

В состав основной машины (ОМ) входят:

процессор (тактовая частота 10 наносекунд);
оперативная память (емкость от 8 до 32 мегабайт);
устройство обмена.
Через каналы (пропускная способность 200 Мгб/сек) подключается массовая интегральная память емкостью 256 Мгб, темп обмена 0,64 мксек на 64-х разрядное слово. Через канал (пропускная способность 10 Мгб/сек) подсоединяется дисковая память, управляемая контроллерами или дисковыми серверами.

Процессор состоит из:

трех групп оперативных регистров, а именно - 8 адресных регистров (A-регистры), 8 скалярных регистров (S-регистры) и 8 векторных регистров (V-регистры);
промежуточных регистров: 64 адресных (B-регистры) и 64 скалярных (T-регистры);
вспомогательных регистров: регистра длины вектора (VL) и регистра векторной маски (VM);
16 полностью независимых конвейерных функциональных устройств, которые могут работать параллельно, выполняя операции над данными из оперативных регистров;
аппаратуры связи регистров с оперативной памятью, аппаратуры управления командами и аппаратуры управления каналами ввода-вывода.
Адресные регистры (A- и B-регистры) содержат 24 разряда, скалярные регистры (S- и T-регистры) - 64 разряда; каждый векторный регистр состоит из 64 слов по 64 разряда.

Каждое функциональное устройство реализует алгоритм одной или нескольких близких операций системы команд ОМ, причем скорость работы любого функционального устройства полностью детерминирована и не зависит от кодов конкретных операндов. Функциональные устройства могут получать новые наборы операндов и выдавать результаты в каждом такте синхронизации.

В состав аппаратуры управления командами и связи с оперативной памятью входит буфер команд, имеющий блочную организацию (16 блоков по 64 командных слога), с ассоциативным поиском номера блока. Наличие буфера команд позволяет значительно сократить число обращений к оперативной памяти при выполнении программы.

Имеется возможность выдачи команд для выполнения в функциональных устройствах с темпом одна команда за один такт синхронизации (максимальная производительность конвейера команд). Каждая команда в момент ее выдачи захватывает необходимые ей ресурсы (основные регистры и функциональные устройства) путем установки признаков резервирования в поле состояния ресурсов системы, приданном устройству управления (при этом соответствующий ресурс оказывается зарезервированным). Если один из ресурсов, запрашиваемых очередной командой, зарезервирован предшествующими командами, выдача команды блокируется до момента освобождения соответствующего ресурса, и конвейер команд приостанавливается. При выполнении скалярной команды регистр, на который должен быть помещен результат, резервируется на все время выполнения команды, а регистры, с которых берутся операнды, и функциональное устройство резервируются только на такт выдачи команды (они освобождаются сразу после выдачи команды). При выполнении векторной команды все три регистра (регистры, с которых берутся операнды, и регистр, на который помещается результат), а также функциональное устройство резервируются на все время выполнения команды.

2.2. Защита памяти

Средства защиты памяти гарантируют неприкосновенность адресных пространств задач разных пользователей и операционной системы. Адресное пространство для задачи определяется содержимым регистра базового адреса и распространяется непрерывной областью до границы, установленной значением в регистре граничного адреса. Все адреса памяти, вырабатываемые при выполнении программы, складываются с содержимым регистра базового адреса, который устанавливается ОС в соответствии с началом отведенной для программы области памяти. Таким образом, программа не может обратиться к ячейке памяти, имеющей физический адрес меньший, чем базовый. Обращение к памяти за пределами граничного адреса приводит к аппаратному прерыванию.

2.3. Система прерываний

Система обеспечивает изменение состояния процессора при возникновении некоторых внешних или внутренних условий, тем самым осуществляется переход на программу обработки прерываний.

В результате прерывания текущее состояние выполняемой программы - счетчик команд, адресные и скалярные регистры, базовый и граничный регистры будут упрятаны в специальную область памяти, называемую пакетом состояния, а из другой такой области на эти регистры будут установлены значения, которые определят состояние программы обработки прерываний.

Источником прерываний могут быть события в работе каналов (например, окончание обмена по каналу), определение ошибки памяти схемами контроля памяти, сигналы от таймера,"программные прерывания". К "программным прерываниям" относятся попытки обращения к памяти за границу адресного пространства, выполнение команд обращения к операционной системе, арифметические "прерывания".

Время переключения на программу обработки прерывания равняется 50 тактам.

2.4. Режимы выполнения

Процессор ОМ имеет два режима выполнения: режим пользователя и привилегированный режим - режим ядра ОС. В режиме пользователя не выполняются некоторые привилегированнные команды, связанные, в основном, с управлением работой каналов ввода/вывода, управлением пакетом состяний, таймером. В режиме ядра выполняются все команды ОС и блокируются прерывания, тем самым обеспечивается корректная обработка прерывний. Режим выполнения устанавливается из текущего пакета состояния в ходе выполнения операции замены (прерывания).

2.5. Особенности программирования.

Время выполнения программы на ОМ зависит от порядка следования команд: переставив две команды, мы, вообще говоря, изменяем время выполнения программы за счет изменения времени блокировки конвейера команд (см. п. 1.1). Для каждой программы существует такой порядок команд, сохраняющий семантику этой программы, при котором суммарное время блокировки конвейера команд минимально.

Другим источником сокращения времени выполнения программы является замена итерационных циклов векторными командами (там, где это возможно) и использование возможности зацепления векторных команд.

Это необходимо учитывать при составлении программ на языке ассемблера, а также при генерации объектных программ в компиляторах с языков высокого уровня.

Profile

1500py470
1500py470

Latest Month

October 2019
S M T W T F S
  12345
6789101112
13141516171819
20212223242526
2728293031  

Tags

Syndicate

RSS Atom
Powered by LiveJournal.com